股票投资模型
股票投资方案的模型或案例
只有券商自营盘或基金等超大资金才用模型并据此建立自动交易系统,他们的自动交易系统也是建立在股指期货的基础之上,和股票进行对冲,以免股票因为突发事件大起大落出现大的亏损。最说明问题的案例就是光大证券的乌龙手,据说是一个打扫卫生的临时工擦了一下操盘手的键盘,一下子把农行拉到涨停。触发其他超级机构的自动交易系统一起动作,大量买入银行股,让大盘一度接近涨停。
研究量化投资模型的目的是找出那些具体盈利确定性的时空价格形态,其最重要手段的概率取胜,最重要的技术是概率统计,最主要的研究方向是市场行为心理。那么我们在选择用于研究的参数时,也应该用我们的经验来确定是否把某技术参数放进去,因为一般来说定性投资比较好用的参数指标对量化投资同样适用。
量化投资区别于传统定性投资的主要特征在于模型。我打个比方,我们看病,中医与西医的诊疗方法是不同,中医是望、闻、问、切,最后判断出的结果,很大程度上基于中医的经验,主观定性程度大一些;西医就不同了,先要病人去拍片子、化验等,这些都要依托于医学仪器,最后得出结论,对症下药。中医对医生的经验要求非常高,他们的主观判断往往决定了治疗效果,而西医则要从容得多,按事先规定好的程序走就行了。量化投资就是股票投资中的西医,它可以比较有效地矫正理智与情绪的不兼容现象。
量化投资的一般思路:选定某些技术指标(我们称之为参数,往往几个组成一组),并将每一个参数的数据范围进行分割,成几等份。然后,用计算机编程写出一段能对这些参数组对股票价格造成的影响进行数据统计的程序,连接至大型数据库进行统计计算,自动选择能够达到较高收益水平的参数组合。但是选出这些参数组后还不能马上应用,因为这里涉及到一个概率陷阱的问题,比如说,有1到100这一百个数字放在那里,现在让你选择,请问你选到100的可能性是多大是的,就是1/100,如果较幸运你选到了100并不能说明你比别人聪明,而是概率的必然。所以,在进行统计时要特别关注统计的频率与选出的结果组数量之间的关系。在选出符合要求的参数组后我们还应留出至少三年的原始市场数据进行验证,只有验证合格后才能试用。
量化投资原始数据策略:我们选用96年后的市场数据,因为96年股市有过一次交易政策改革(你可以自己查询了解一下),为了不影响研究结果我们不采纳96年以前的数据进数据库。
量化投资研究的硬设备:高计算性能电脑,家用电脑也可以,不过运算时间会很长,我曾经用家用电脑计算了三个月时间才得到想要的数据。
统计方法:可以选用遗传算法,但我在这里陪大家做的是比较简单的模型,所以采用普通统计方法就可以了。
用于量化研究的软件:我采用的是免费的大型数据库MYSQL,ASP网络编程语言,以及可以设置成网络服务器的旗舰版WIN7操作系统。 股票如何做资金流模型
在市场中,经常存在交易性机会,这是指股价在短期内可能受到某些消息的影响,或者某些市场内在因素的改变从而产生剧烈波动带来的价差投资机会。其中,一个典型的交易性策略就是资金流模型,该模型使用资金流流向来判断股票在未来一段时间的涨跌情况,如果是资金流入的股票,则股价在未来一段时间将可能会上涨;如果是资金流出的股票,则股价在未来一段时间可能会下跌,那么,根据资金流向就可以构建相应的投资策略。
基本概念资金流是一种反映股票供求关系的指标。传统的量价无法区分市场微观结构中的流动性和私有信息对股价的影响,而根据委托测算的资金流,能够有效地观察微观市场交易者的真实意图及对股价造成的影响。资金流定义如下:证券价格在约定的时间段中处于上升状态时产生的成交额是推动指数上涨的力量,这部分成交额被定义为资金流入;证券价格在约定的时间段中下跌时的成交额是推动指数下跌的力量,这部分成交额被定义为资金流出;若证券价格在约定的时间段前后没有发生变化,则这段时间中的成交额不计入资金流量。策略模型1.逆向选择理论在非强势有效的A股市场,普遍存在信息不对称的问题。机构投资者与散户投资者在对同一信息的评估能力上存在差异。在大部分情况下,散户投资者缺乏专业的投资能力和精力,那么根据“搭便车”理论,希望借助机构投资者对股价的判断进行投资。一旦机构投资者率先对潜在市场信息做出反应,羊群效应的散户投资者则追涨杀跌,往往导致在很多情况下市场对潜在信息反应过度。这样根据逆向选择理论,能够准确评估信息价值的投资者便会对反应过度的股价做出交易,买入低估的、卖出高估的股票,从而纠正这种信息反应过度行为。根据市场对潜在信息反应过度的结论及市场投资者的行为特征,可以采取逆向选择模型理论来构建选股模型,即卖出前期资金流入、价格上涨的股票,买入前期资金流出、价格下跌的股票。按照这个思路,对一些指标参数进行回测分析,可以得到稳定的选股模型。2.策略模型根据资金流各种指标的特点,在选股模型中采用比较简单的方法,即以指标排序打分的方式来筛选股票。首先通过对各个资金流指标进行排序打分,然后将股票对各个指标的得分进行求和,最后以总得分值大小来筛选股票,具体步骤如下:(1)确定待选股票池。在选择组合构建时,剔除上市不满一个月的股票,剔除调仓期涨跌停及停牌的股票,防止因涨/跌停无法交易。剔除信息含量小于10%的股票,因为这部分股票信号不明显,无法取得有效信息。(2)构建股票组合。①指标打分:首先将待选股票池中的股票按照资金流指标进行排序,然后采用百分制整数打分法进行指标打分,即以股票在各个指标中所处位置的百分数作为股票对于该指标的得分,前1%得分为1,依次递减,最后1%得分为100。②求和排序:将股票相对于各个指标的得分进行求和,将和值从小到大排序,进行分组比较;另外,选择排名靠前的N只股票构建组合。③股票权重:采用等量权重。(3)组合定期调整,调整时间从1到3个月不等。持有到期后,利用更新后的指标数据重新确定待选股票池,重复步骤(2)打分求和过程,并将股票按照指标得分从小到大排序,将原来分组中跌出组合的股票剔除,调进新的股票,同时将新组合内样本股的权重调整到相等。(4)统计检验。分别计算各组合的收益率情况,考察组合的效果。 在股票估价基本的模型下 股票投资的现金流量包括什么
投资活动产生的现金流入和流出内容
(一)现金流入
1、 收回投资所收到的现金=长期股权投资贷方发生额+长期债权投资贷方发生额+短期投资贷方发生额。
2、 分得股利或利润所收到的现金=投资收益(股权投资)贷方发生额。
3、 取得债权利息收入所收到的现金=投资收益(债权投资)贷方发生额。
4、 处置固定资产、无形资产和其他长期资产而收回的现金净额=固定资产清理贷方(变价收入)+营业外收入(处置无形资产收入差额)+无形资产贷方(处置收入的账面价)-固定资产清理借方(清理费支出)。
5、 收到与投资活动有关的现金=应收股利贷方+应收利息贷方。即上期已作收入但本期收到的现金股利和债券利息。
(二)现金流出
1、购建固定资产、无形资产和其他长期资产所支付的现金=以下科目的借方发生额填列:工程物资、在建工程、应付工资—工程人员工资、应付福利费—工程人员福利费、固定资产、无形资产、开办费、长期待摊费用。如收到捐赠或收到外单位以固定资产、无形资产作投资的应减去(如果新增的固定资产即有需要安装的资产又有不需要安装的,就用固定的借方发生额减去在建工程的贷方发生额加上在建工程借方发生额)。
2、权益性投资所支付的现金=长期股权投资借方发生额+短期投资—股票投资。
3、 债权性投资所支付的现金=长期债权投资借方发生额+短期投资—债券投资。
4、 支付其他与投资活动有关的现金=本项目反映投资活动中垫付的已宣告但尚未领取的股利和已到期尚未领取的债券利息等。指应收利息、应收股利的借方发生额。 股票投资的分析方法有哪些
你好,股票投资分析方法主要有如下三种:基本分析、技术分析、演化分析。
(1)、基本分析(Fundamental Analysis ):以企业内在价值作为主要研究对象,从决定企业价值和影响股票价格的宏观经济形势、行业发展前景、企业经营状况等方面入手(一般经济学范式),进行详尽分析以大概测算上市公司的投资价值和安全边际,并与当前的股票价格进行比较,形成相应的投资建议。基本分析认为股价波动轨迹不可能被准确预测,而只能在有足够安全边际的情况下“买入并长期持有”,在安全边际消失后卖出。
(2)、技术分析(Technical Analysis):以股价涨跌的直观行为表现作为主要研究对象,以预测股价波动形态和趋势为主要目的,从股价变化的K线图表与技术指标入手(数理或牛顿范式),对股市波动规律进行分析的方法总和。技术分析有三个颇具争议的前提假设,即市场行为包容消化一切;价格以趋势方式波动;历史会重演。国内比较流行的技术分析方法包括道氏理论、波浪理论、江恩理论等。
(3)、演化分析(Evolutionary Analysis):以股市波动的生命运动内在属性作为主要研究对象,从股市的代谢性、趋利性、适应性、可塑性、应激性、变异性、节律性等方面入手(生物学或达尔文范式),对市场波动方向与空间进行动态跟踪研究,为股票交易决策提供机会和风险评估的方法总和。演化分析从股市波动的本质属性出发,认为股市波动的各种复杂因果关系或者现象,都可以从生命运动的基本原理中,找到它们之间的逻辑关系及合理解释,并为构建科学合理的博弈决策框架,提供令人信服的依据。
本信息不构成任何投资建议,投资者不应以该等信息取代其独立判断或仅根据该等信息作出决策,如自行操作,请注意仓位控制和风险控制。 股票价值评估的模型和在实际操作中所注意的问题分别是什么
股票价值评估分以下几种模型:
1.DDM模型(Dividend discount model /股利折现模型)
2.DCF /Discount Cash Flow /折现现金流模型)
(1)FCFE ( Free cash flow for the equity equity /股权自由现金流模型)模型
(2)FCFF模型( Free cash flow for the firm firm /公司自由现金流模型)
DDM模型
V代表普通股的内在价值, Dt为普通股第t期支付的股息或红利,r为贴现率
对股息增长率的不同假定,股息贴现模型可以分为
:零增长模型、不变增长模型(高顿增长模型)、二阶段股利增长模型(H模型)、三阶段股利增长模型和多元增长模型等形式。
最为基础的模型;红利折现是内在价值最严格的定义; DCF法大量借鉴了DDM的一些逻辑和计算方法(基于同样的假设/相同的限制)。
1. DDM DDM模型模型法(Dividend discount model / Dividend discount model / 股利折现模型股利折现模型)
DDM模型
2. DDM DDM模型的适用分红多且稳定的公司,非周期性行业;
3. DDM DDM模型的不适用分红很少或者不稳定公司,周期性行业;
DDM模型在大陆基本不适用;
大陆股市的行业结构及上市公司资金饥渴决定,分红比例不高,分红的比例与数量不具有稳定性,难以对股利增长率做出预测。
DCF 模型
2.DCF /Discount Cash Flow /折现现金流模型) DCF估值法为最严谨的对企业和股票估值的方法,原则上该模型适用于任何类型的公司。
自由现金流替代股利,更科学、不易受人为影响。
当全部股权自由现金流用于股息支付时, FCFE模型与DDM模型并无区别;但总体而言,股息不等同于股权自由现金流,时高时低,原因有四:
稳定性要求(不确定未来是否有能力支付高股息);
未来投资的需要(预计未来资本支出/融资的不便与昂贵);
税收因素(累进制的个人所得税较高时);
信号特征(股息上升/前景看好;股息下降/前景看淡)
DCF模型的优缺点
优点:比其他常用的建议评价模型涵盖更完整的评价模型,框架最严谨但相对较复杂的评价模型。需要的信息量更多,角度更全面, 考虑公司发展的长期性。较为详细,预测时间较长,而且考虑较多的变数,如获利成长、资金成本等,能够提供适当思考的模型。
缺点:需要耗费较长的时间,须对公司的营运情形与产业特性有深入的了解。考量公司的未来获利、成长与风险的完整评价模型,但是其数据估算具有高度的主观性与不确定性。复杂的模型,可能因数据估算不易而无法采用,即使勉强进行估算,错误的数据套入完美的模型中,也无法得到正确的结果。小变化在输入上可能导致大变化在公司的价值上。该模型的准确性受输入值的影响很大(可作敏感性分析补救)。
