股票量化模型公式,通达信peg指标公式
1:如何开发量化投资模型
4.如何进行量化投资
一个量化投资的交易系统主要包括三个部分,阿尔法模型、风险模型和交易成本模型。
阿尔法模型旨在预测宽客所考虑金融产品的未来趋势;
风险模型旨在帮助宽客投资不太能带来收益但会造成损失的敞口规模;
交易成本模型用于帮助确定从目前的投资组合到新的投资组合的交易成本。
目前对于量化交易的研究重点大都集中在对阿尔法模型的研究上。
阿尔法模型
阿尔法模型是量化交易系统的第一个重要组成部分,主要是为了寻找盈利机会。
阿尔法是希腊字母α的音译,常用于量化表述投资者的盈利能力或投资者得到的与市场波动无关的回报。
阿尔法模型分为:
趋势形、回复型、技术情绪型、价值型/收益型、成长型和品质型
趋势型和均值回复型交易策略都依赖价格数据;纯技术情绪型的策略比较少见通常都只作为一个辅助因子;而价值型/收益型、成长型和品质型策略都基于基本面数据
趋势跟随策略
趋势跟随策略是基于以下基本的假定:在一定时间内市场通常朝着同一方向变化,据此对市场趋势做出判断就可以作为制定交易策略的依据。常见于市场,最常用移动平均线交叉来定义趋势。
均值回复策略
均值回复策略的基本理论认为,价格围绕其价值中枢而上下波动,判断出这个中枢以及波动的方向便足以捕捉到交易机会。统计套利是用的最多的均值回复策略,认为价格出现背离类似股票的价值终究会缩小到合理的区间范围。
技术情绪型策略
这一类策略没有明确的经济理论支撑,主要通过追踪投资者情绪相关指标来判断预期回报,如交易价格、交易量以及波动性指标等。比如观察期权市场的认沽认购量和隐含波动率做现货的择时,再者就是高频交易通过限价指令簿的形态来判断近期市场情绪。
价值型/收益型策略
价值型策略主要用于股票交易。这类策略认为市场倾向于高估高风险资产的风险,而低估低风险资产的风险。因此,在适当的时间买入高风险资产和卖出低风险资产,就可以获得收益。常用的指标有PE(市盈率)、PB(市净率)等,常应用于股票多空。
成长型策略
成长型策略试图通过对所考虑资产以往的增长水平进而对未来的走势进行预测。他认为价格上涨通常都是存在趋势的,价格上涨最快的产品通常比同类产品更具有优势,他要求投资者能尽早判断公司的股价处于增长期,从而捕捉到公司的股价未来更大的上涨幅度。宏观上常见于市场,例如持有经济迅速增长的国家的,这些国家的利率比经济增长缓慢或处于复苏期的经济体要高;股票市场通常用EPS等指标度量。
品质型策略
这类策略的支持者认为,在其他条件相同的条件下最好买入或持有高品质的产品而做空或减少持有低品质的资产。这类策略比较看重资金的安全,受宏观市场影响比较大,常用的指标有比率、收入波动比、管理团队水平和欺诈风险。
不管是什么类型的策略最终受益都体现在交易中关于买卖时机的把握和持有头寸选择的技巧。
这个社区里面有很多关于量化的策略,也有很多牛人,可以和他们多讨论讨论的。
2:
研究量化投资模型的目的是找出那些具体盈利确定性的时空价格形态,其最重要手段的概率取胜,最重要的技术是概率统计,最主要的研究方向是市场行为心理。那么我们在选择用于研究的参数时,也应该用我们的经验来确定是否把某技术参数放进去,因为一般来说定性投资比较好用的参数指标对量化投资同样适用。
量化投资区别于传统定性投资的主要特征在于模型。我打个比方,我们看病,中医与西医的诊疗方法是不同,中医是望、闻、问、切,最后判断出的结果,很大程度上基于中医的经验,主观定性程度大一些;西医就不同了,先要病人去拍片子、化验等,这些都要依托于医学仪器,最后得出结论,对症下药。中医对医生的经验要求非常高,他们的主观判断往往决定了治疗效果,而西医则要从容得多,按事先规定好的程序走就行了。量化投资就是股票投资中的西医,它可以比较有效地矫正理智与情绪的不兼容现象。
量化投资的一般思路:选定某些技术指标(我们称之为参数,往往几个组成一组),并将每一个参数的数据范围进行分割,成几等份。然后,用计算机编程写出一段能对这些参数组对股票价格造成的影响进行数据统计的程序,连接至大型数据库进行统计计算,自动选择能够达到较高收益水平的参数组合。但是选出这些参数组后还不能马上应用,因为这里涉及到一个概率陷阱的问题,比如说,有1到100这一百个数字放在那里,现在让你选择,请问你选到100的可能性是多大是的,就是1/100,如果较幸运你选到了100并不能说明你比别人聪明,而是概率的必然。所以,在进行统计时要特别关注统计的频率与选出的结果组数量之间的关系。在选出符合要求的参数组后我们还应留出至少三年的原始市场数据进行验证,只有验证合格后才能试用。
量化投资原始数据策略:我们选用96年后的市场数据,因为96年股市有过一次交易政策改革(你可以自己查询了解一下),为了不影响研究结果我们不采纳96年以前的数据进数据库。
量化投资研究的硬设备:高计算性能电脑,家用电脑也可以,不过运算时间会很长,我曾经用家用电脑计算了三个月时间才得到想要的数据。
统计方法:可以选用遗传算法,但我在这里陪大家做的是比较简单的模型,所以采用普通统计方法就可以了。
用于量化研究的软件:我采用的是免费的大型数据库MYSL,ASP网络编程语言,以及可以设置成网络服务器的旗舰版WIN7操作系统。
3:开户 程序化交易 量化投资 交易策略 量化模型 开拓者 金字塔 CTP 交易策略 量化模型
程序化交易软件:
文华
1 上手快,简单易学,通用的脚本语言(类似于传统的股票软件指标语言)。提供基本自由度的功能实现。
2 可进行历史数据回测。
3 策略可加密。
4 市场投资客户。
5 刚开始接触程序化交易的投资客户。
6 熟悉通用炒股软件指标编写的客户。
· 开拓者
7 功能强大,编程语言比较专业(类Pascal),可方便的编写自己的函数。提供高自由度的功能实现。
8 可进行历史数据回测。
9 策略可加密。
10 市场投资客户。
11 有一定编程能力支持的投资客户。
12 交易策略比较复杂的投资客户。
· 达钱+MC
13 源于国外,经久考验,功能强大。
14 全球标准的支持策略语言, EasyLanguage。
15 编译及回测速度效能高,集成优异的策略回测和优化功能,提供详细、完整的策略绩效报告。
16 支持自定义任一周期线图显示及策略回测
17 支持Excel插件、完整数据管理接口 (DDE,Global Server,……)
18 市场投资客户。
19 有一定编程能力支持的投资客户。
20 交易策略比较复杂的投资客户。
21 需要使用Excel软件辅助程序化交易的客户。
· 东海潜龙
22 编程语言专业,实现功能非常灵活。提供完全自由的功能实现。
23 可进行历史数据回测。 集群服务器模式,稳定性高。
24 直连交易所,交易速度很快。
25 可同时进行股票投资和投资,连接国内股票、六大交易。
26 可定制交易界面。 提供接口,可连接外部策略软件。
27 股票市场、市场专业投资客户和机构投资者。
28 对速度和稳定性有更高要求的客户(比如高交易频率的客户)。
29 交易策略复杂,定制化要求程度高。
· 金字塔
30 国内独家支持图表程式化交易、后台程式化交易、高频交易、趋势线预警交易等多种自动交易模式。
31 支持一键下单,图表下单等多种手工下单模式。
32 程式化交易模型编写及操作兼容国内主流分析软件。
33 支持套利、多帐户交易及动态止赢止损功能。
34 支持板块指数、自定义数据等横向统计功能。
35 基于OFFICE架构下的VBA二次开发功能。
4:庄家做股票吸筹过程有量化模型吗
长期缩量盘整之后 K线形态走收敛三角形或者一个区间盘整形态 同时看季报的股东人数是逐步减少的,这代表有特定主力或者公司派从散户手里吸收了筹码,这时候在K线形态末端开始有超过二十日均量2倍以上成交量突破形态,可以视为建仓进入尾声开始拉升段。
但是这里也要防止主力假突破试单测验抛压
防守点设定为突破日K线实体的二分之一,之后几个交易日不跌破就会直接进入拉升的主升段,如果跌破,这一天就是假突破,就应该果断止损,因为接下来又会是长时间盘整,直到下一次超过二十日均量2倍以上成交量突破形态。
5:如何建立量化交易模型
量化投资的一般思路:选定某些技术指标(我们称之为参数,往往几个组成一组),并将每一个参数的数据范围进行分割,成几等份。然后,用计算机编程写出一段能对这些参数组对股票价格造成的影响进行数据统计的程序,连接至大型数据库进行统计计算,自动选择能够达到较高收益水平的参数组合。但是选出这些参数组后还不能马上应用,因为这里涉及到一个概率陷阱的问题,比如说,有1到100这一百个数字放在那里,现在让你选择,请问你选到100的可能性是多大是的,就是1/100,如果较幸运你选到了100并不能说明你比别人聪明,而是概率的必然。所以,在进行统计时要特别关注统计的频率与选出的结果组数量之间的关系。在选出符合要求的参数组后我们还应留出至少三年的原始市场数据进行验证,只有验证合格后才能试用。
量化投资原始数据策略:我们选用96年后的市场数据,因为96年股市有过一次交易政策改革(你可以自己查询了解一下),为了不影响研究结果我们不采纳96年以前的数据进数据库。
量化投资研究的硬设备:高计算性能电脑,家用电脑也可以,不过运算时间会很长,我曾经用家用电脑计算了三个月时间才得到想要的数据。
统计方法:可以选用遗传算法,但我在这里陪大家做的是比较简单的模型,所以采用普通统计方法就可以了。
用于量化研究的软件:我采用的是免费的大型数据库MYSL,ASP网络编程语言,以及可以设置成网络服务器的旗舰版WIN7操作系统
6:股票市场中什么 是量化投资!
微量网:量化投资在海外的发展已有30多年的历史,其投资业绩稳定,市场规模和份额不断扩大、得到了越来越多投资者认可。
量化投资区别于定性投资的鲜明特征就是模型,对于量化投资中模型与人的关系,大家也比较关心。我打个比方来说明这种关系,我们先看一看医生治病,中医与西医的诊疗方法不同,中医是望、闻、问、切,最后判断出的结果,很大程度上基于中医的经验,定性程度上大一些;西医就不同了,先要病人去拍片子、化验等,这些都要依托于医学仪器,最后得出结论,对症下药。
医生治疗病人的疾病,投资者治疗市场的疾病,市场的疾病是什么就是错误定价和估值,没病或病得比较轻,市场是有效或弱有效的;病得越严重,市场越无效。投资者用资金投资于低估的证券,直到把它的价格抬升到合理的价格水平上。
但是,定性投资和定量投资的具体做法有些差异,这些差异如同中医和西医的差异,定性投资更像中医,更多地依靠经验和感觉判断病在哪里;定量投资更像是西医,依靠模型判断,模型对于定量投资基金经理的作用就像CT机对于医生的作用。在每一天的投资运作之前,我会先用模型对整个市场进行一次全面的检查和扫描,然后根据检查和扫描结果做出投资决策。
量化投资技术几乎覆盖了投资的全过程,包括量化选股、量化择时、股指套利、商品套利、统计套利、算法交易,资产配置,风险控制等。