中科院联合清华北大构建新型类脑网络,构建

2024-08-16 22:18:43

  据“中国科学院自动化研究所”消息,该所李国齐、徐波研究团队联合清华大学、北京大学等借鉴大脑神经元复杂动力学特性,提出了“基于内生复杂性”的类脑神经元模型构建方法,改善了传统模型通过向外拓展规模带来的计算资源消耗问题,附研究主要内容:

  据介绍,本研究首先展示了脉冲神经网络神经元 LIF模型和 HH模型在动力学特性上存在等效性,进一步从理论上证明了 HH 神经元可以和四个具有特定连接结构的时变参数 LIF 神经元动力学特性等效。基于这种等效性,团队通过设计微架构提升计算单元的内生复杂性,使 HH 网络模型能够模拟更大规模 LIF 网络模型的动力学特性,

  ▲神经元和神经网络的内生复杂性与外部复杂性

  进一步,团队将由四个 tv-LIF 神经元构建的“HH 模型”简化为 s-LIF2HH 模型,通过仿真实验验证了这种简化模型在捕捉复杂动力学行为方面的有效性。

  实验结果表明 HH 网络模型和 s-LIF2HH 网络模型在表示能力和鲁棒性上具有相似的性能,验证了内生复杂性模型在处理复杂任务时的有效性和可靠性。同时,研究发现 HH 网络模型在计算资源消耗上更为高效,

  ▲模型框架

  本研究为将神经科学的复杂动力学特性融入人工智能,相关论文:

下一篇:文旅部回应热门景点抢票难:要求所有景区均保
上一篇:小米推出米家空气炸锅 S1 6L:烘烤免翻面,售价
返回顶部小火箭